↳ ITRS
↳ ITRStoIDPProof
z
Cond_eval(TRUE, x, y) → eval(-@z(x, 1@z), y)
eval(x, y) → Cond_eval(>@z(x, y), x, y)
Cond_eval(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
Cond_eval(TRUE, x, y) → eval(-@z(x, 1@z), y)
eval(x, y) → Cond_eval(>@z(x, y), x, y)
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(>@z(x[0], y[0]) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], 1@z) →* x[0]))
Cond_eval(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(>@z(x[0], y[0]) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], 1@z) →* x[0]))
Cond_eval(TRUE, x0, x1)
eval(x0, x1)
(1) (EVAL(x[0], y[0])≥NonInfC∧EVAL(x[0], y[0])≥COND_EVAL(>@z(x[0], y[0]), x[0], y[0])∧(UIncreasing(COND_EVAL(>@z(x[0], y[0]), x[0], y[0])), ≥))
(2) ((UIncreasing(COND_EVAL(>@z(x[0], y[0]), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL(>@z(x[0], y[0]), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧(UIncreasing(COND_EVAL(>@z(x[0], y[0]), x[0], y[0])), ≥)∧0 ≥ 0)
(5) (0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(>@z(x[0], y[0]), x[0], y[0])), ≥)∧0 ≥ 0∧0 = 0)
(6) (y[1]=y[0]1∧>@z(x[0], y[0])=TRUE∧y[0]=y[1]∧x[0]=x[1]∧-@z(x[1], 1@z)=x[0]1 ⇒ COND_EVAL(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1])≥EVAL(-@z(x[1], 1@z), y[1])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(7) (>@z(x[0], y[0])=TRUE ⇒ COND_EVAL(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0])≥EVAL(-@z(x[0], 1@z), y[0])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(8) (x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 + (-1)Bound + (-1)y[0] + x[0] ≥ 0∧0 ≥ 0)
(9) (x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 + (-1)Bound + (-1)y[0] + x[0] ≥ 0∧0 ≥ 0)
(10) (x[0] + -1 + (-1)y[0] ≥ 0 ⇒ 1 + (-1)Bound + (-1)y[0] + x[0] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(11) (y[0] ≥ 0 ⇒ 2 + (-1)Bound + y[0] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(12) (y[0] ≥ 0∧x[0] ≥ 0 ⇒ 2 + (-1)Bound + y[0] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(13) (y[0] ≥ 0∧x[0] ≥ 0 ⇒ 2 + (-1)Bound + y[0] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(TRUE) = -1
POL(COND_EVAL(x1, x2, x3)) = 1 + (-1)x3 + x2
POL(EVAL(x1, x2)) = 2 + (-1)x2 + x1
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = 0
EVAL(x[0], y[0]) → COND_EVAL(>@z(x[0], y[0]), x[0], y[0])
COND_EVAL(TRUE, x[1], y[1]) → EVAL(-@z(x[1], 1@z), y[1])
COND_EVAL(TRUE, x[1], y[1]) → EVAL(-@z(x[1], 1@z), y[1])
-@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
Cond_eval(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
Cond_eval(TRUE, x0, x1)
eval(x0, x1)